LLMS Course | Architecture RAG Governance and All Other Topics

SLIDE1

SLIDE1
SLIDE1

SLIDE2

SLIDE2
SLIDE2

SLIDE3

SLIDE3
SLIDE3

SLIDE4

SLIDE4
SLIDE4

SLIDE5

SLIDE5
SLIDE5

SLIDE6

SLIDE6
SLIDE6

SLIDE7

SLIDE7
SLIDE7

SLIDE8

SLIDE8
SLIDE8

SLIDE9

SLIDE9
SLIDE9

SLIDE10

SLIDE10
SLIDE10

SLIDE11

SLIDE11
SLIDE11

SLIDE12

SLIDE12
SLIDE12

SLIDE13

SLIDE13
SLIDE13

SLIDE14

SLIDE14
SLIDE14

SLIDE15

SLIDE15
SLIDE15

SLIDE16

SLIDE16
SLIDE16

SLIDE17

SLIDE17
SLIDE17

SLIDE18

SLIDE18
SLIDE18

SLIDE19

SLIDE19
SLIDE19

SLIDE20

SLIDE20
SLIDE20

SLIDE21

SLIDE21
SLIDE21

SLIDE22

SLIDE22
SLIDE22

SLIDE23

SLIDE23
SLIDE23

SLIDE24

SLIDE24
SLIDE24

SLIDE25

SLIDE25
SLIDE25

SLIDE26

SLIDE26
SLIDE26

SLIDE27

SLIDE27
SLIDE27

SLIDE28

SLIDE28
SLIDE28

SLIDE29

SLIDE29
SLIDE29

SLIDE30

SLIDE30
SLIDE30

SLIDE31

SLIDE31
SLIDE31

SLIDE32

SLIDE32
SLIDE32

SLIDE33

SLIDE33
SLIDE33

SLIDE34

SLIDE34
SLIDE34

SLIDE35

SLIDE35
SLIDE35

SLIDE36

SLIDE36
SLIDE36

SLIDE37

SLIDE37
SLIDE37

SLIDE38

SLIDE38
SLIDE38

SLIDE39

SLIDE39
SLIDE39

SLIDE40

SLIDE40
SLIDE40

SLIDE41

SLIDE41
SLIDE41

SLIDE42

SLIDE42
SLIDE42

LLM PRESENTATION 001

LLM PRESENTATION 001
LLM PRESENTATION 001

LLM PRESENTATION 002

LLM PRESENTATION 002
LLM PRESENTATION 002

LLM PRESENTATION 003

LLM PRESENTATION 003
LLM PRESENTATION 003

LLM PRESENTATION 004

LLM PRESENTATION 004
LLM PRESENTATION 004

LLM PRESENTATION 005

LLM PRESENTATION 005
LLM PRESENTATION 005

LLM PRESENTATION 006

LLM PRESENTATION 006
LLM PRESENTATION 006

LLM PRESENTATION 007

LLM PRESENTATION 007
LLM PRESENTATION 007

LLM PRESENTATION 008

LLM PRESENTATION 008
LLM PRESENTATION 008

LLM PRESENTATION 009

LLM PRESENTATION 009
LLM PRESENTATION 009

LLM PRESENTATION 010

LLM PRESENTATION 010
LLM PRESENTATION 010


Large Language Models (LLMs)


LLMs are a type of artificial intelligence (AI) capable of processing and generating human-like text in response to a wide range of prompts and questions. Trained on massive datasets of text and code, they can perform various tasks such as:

Generating different creative text formats: poems, code, scripts, musical pieces, emails, letters, etc.
Answering open ended, challenging, or strange questions in an informative way: drawing on their internal knowledge and understanding of the world.
Translating languages: seamlessly converting text from one language to another.
Writing different kinds of creative content: stories, poems, scripts, musical pieces, etc., often indistinguishable from human-written content.

Retrieval Augmented Generation (RAG)


RAG is a novel approach that combines the strengths of LLMs with external knowledge sources. It works by:

Retrieval: When given a prompt, RAG searches through an external database of relevant documents to find information related to the query.
Augmentation: The retrieved information is then used to enrich the context provided to the LLM. This can be done by incorporating facts, examples, or arguments into the prompt.
Generation: Finally, the LLM uses the enhanced context to generate a response that is grounded in factual information and tailored to the specific query.
RAG offers several advantages over traditional LLM approaches:

Improved factual accuracy: By anchoring responses in real-world data, RAG reduces the risk of generating false or misleading information.
Greater adaptability: As external knowledge sources are updated, RAG can access the latest information, making it more adaptable to changing circumstances.
Transparency: RAG facilitates a clear understanding of the sources used to generate responses, fostering trust and accountability.
However, RAG also has its challenges:

Data quality: The accuracy and relevance of RAG's outputs depend heavily on the quality of the external knowledge sources.
Retrieval efficiency: Finding the most relevant information from a large database can be computationally expensive.
Integration complexity: Combining two different systems (retrieval and generation) introduces additional complexity in terms of design and implementation.

Prompt Engineering


Prompt engineering is a crucial technique for guiding LLMs towards generating desired outputs. It involves crafting prompts that:

Clearly define the task: Specify what the LLM should do with the provided information.
Provide context: Give the LLM enough background knowledge to understand the prompt and generate an appropriate response.
Use appropriate language: Frame the prompt in a way that aligns with the LLM's capabilities and training data.



Advantage of using RAG


Better Accuracy: If factual correctness is crucial, RAG can be fantastic. It retrieves information from external sources, allowing the AI assistant to double-check its responses and provide well-sourced answers.
Domain Knowledge: Imagine an AI assistant for medical diagnosis or legal or up to date tax laws. RAG can access medical databases to enhance its responses and ensure they align with established medical knowledge.
Reduce Hallucination: LLMs can sometimes fabricate information, a phenomenon called hallucination in which they make up things. RAG mitigates this risk by grounding the response in retrieved data.
Building Trust: By citing sources, RAG fosters trust with users. Users can verify the information and see the reasoning behind the response.

Disadvantages of using RAG


Speed is Crucial: RAG involves retrieving information, which can add a slight delay to the response. If real-time response is essential, a pre-trained LLM might be sufficient.
Limited Context: RAG works best when the user's query and context are clear. If the conversation is ambiguous, retrieved information might not be relevant.
Privacy Concerns: If the AI assistant deals with sensitive user data, RAG might raise privacy concerns. External retrievals could potentially expose user information.





Course-of-llm   

Dataknobs Blog

Showcase: 10 Production Use Cases

10 Use Cases Built By Dataknobs

Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

Data Product Approach

Why Build Data Products

Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

AI Agent Tutorial

Agent AI Tutorial

Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

Build Data Products

How Dataknobs help in building data products

GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

KreateHub

Create New knowledge with Prompt library

KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

RAG for Unstructured & Structured Data

RAG Use Cases and Implementation

Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

Why knobs matter

Knobs are levers using which you manage output

The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

Our Products

KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations