Generative AI Modeling Architectures Slides | Gen AI Models

TECH STACK
TECH STACK
        
ARCHITECTURE
ARCHITECTURE
        
EVOLUTION
EVOLUTION
        


Generative AI Modeling Architectures


  • Autoncoder takes high dimensional data as input and produce compress form

  • GAN modelig architecture have generator and discriminator component. Generate generate new data and discriminator distinguish between real data and generated data

  • LSTM and Attention model are Seq2Seq model. It is based on encoder-decoder and attention mechanism. Attention mechanism help model ocus on things that matter. Transform is extennsion of attention model. It even encode position

  • Diffusion model is used in images. It is based on principls howw a substance spread in medium.

  • GAN Architecture


    A GAN model architecture is a combination of two neural networks that are trained in an adversarial manner. The first neural network, the generator, is responsible for creating new data. The second neural network, the discriminator, is responsible for distinguishing between real data and data created by the generator. The two networks are trained simultaneously, with the generator trying to fool the discriminator and the discriminator trying to correctly identify real and fake data.


    Big GAN


    BigGAN is a generative adversarial network (GAN) that uses a modified training regime to improve the quality of generated images. The main difference between BigGAN and other GANs is that BigGAN uses a progressive growing technique, which gradually increases the size of the generator and discriminator networks. This allows BigGAN to generate more realistic images than other GANs.


    Style GAN


    StyleGAN is a generative adversarial network (GAN) that uses a style-based generator architecture to generate high-quality images. The style-based generator architecture allows StyleGAN to generate images with a high level of detail and realism.


    StyleGAN 2 addresses the shortcomings of StyleGAN, such as artifacts and instability. It uses Weight demodulation instead of AdaIN and it uses Residual connections instead of progressive growing:


    VQ GAN


    VQ-GAN is a generative adversarial network (GAN) that uses a vector quantization (VQ) method to improve the quality of generated images. VQ is a technique for representing data as a discrete set of symbols. In the case of VQ-GAN, the data is represented as a discrete set of vectors. This allows VQ-GAN to generate images with a higher level of detail than other GANs.


    Auto Encoder


    Variational autoencoder (VAE) is a generative model that learns to represent data by encoding it into a latent space. The latent space is a lower-dimensional space that captures the essential features of the data. The VAE can then be used to generate new data by sampling from the latent space and decoding it back to the original space.


    Conditional Variational Auto Encoder


    A conditional variational autoencoder (CVAE) is a generative model that takes an additional input, called the condition, and generates data that is conditioned on that input. This is in contrast to a variational autoencoder (VAE), which does not take any additional inputs and generates data that is not conditioned on anything. Because of this, CVAE can be used to generate data that is specific to a particular condition. For example, a CVAE could be used to generate images of monkey that are all wearing pajamas, or to generate text or css with particular formatting style.


    Attention and Transformer


    An attention model is a neural network that learns to focus on specific parts of an input sequence. This is done by computing a weighted sum of the input sequence, where the weights are determined by the attention mechanism. The weighted sum is then used to generate the output sequence.


    Attention to Transformer model


    A transformer modeling architecture is a neural network that uses attention mechanisms to learn long-range dependencies in the input sequence. The attention mechanism allows the model to focus on specific parts of the input sequence, which is important for tasks such as machine translation and text summarization.


    Diffusion model


    Diffusion models are a type of generative model that adds noise to data gradually and then learns to reverse the process to generate new data. Diffusion models are often used for image generation, but they can also be used for other types of data, such as text and audio.


    Schedule a workshop


    đź“© Email, Text, or Call

    To book a workshop, please send an email from your business email address.

    Email to book workshop: workshop@dataknobs.com

    You can also:






    The future of creativity is generative ai. Here are slides and deep dive for Generative AI






    Dataknobs Blog

    Showcase: 10 Production Use Cases

    10 Use Cases Built By Dataknobs

    Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

    Data Product Approach

    Why Build Data Products

    Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

    AI Agent for Business Analysis

    Analyze reports, dashboard and determine To-do

    Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

    AI Agent Tutorial

    Agent AI Tutorial

    Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

    Build Data Products

    How Dataknobs help in building data products

    GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

    KreateHub

    Create New knowledge with Prompt library

    KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

    Build Budget Plan for GenAI

    CIO Guide to create GenAI Budget for 2025

    A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

    RAG for Unstructured & Structured Data

    RAG Use Cases and Implementation

    Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

    Why knobs matter

    Knobs are levers using which you manage output

    The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

    Our Products

    KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations