Generative AI Challenges Slides | Ethical, Trust, Copyright

CHALLENGS OVERVIEW

CHALLENGS OVERVIEW
CHALLENGS OVERVIEW

THREATS

THREATS
THREATS

TYPE OF CHALLENGES

TYPE OF CHALLENGES
TYPE OF CHALLENGES

UNCONTROLLED BEHAVIOR

UNCONTROLLED BEHAVIOR
UNCONTROLLED BEHAVIOR

ETHICAL ISSUES

ETHICAL ISSUES
ETHICAL ISSUES

DATA OWNERSHIP

DATA OWNERSHIP
DATA OWNERSHIP


Summary of Generative AI threats, challenges, risks


Dimensions of threats


  • New threats

  • How existing threats are changing

  • how existing threats have expanded

  • Ethical challenges


  • Lack of transparency

  • bias

  • Data privacy

  • IP and copyright violations

  • Environment challenges


  • high energy, compute

  • Carbaon foot print

  • Gen AI Risks and Threat


    Generative AI: Challenges and Ethical Considerations

    Generative Artificial Intelligence (AI) has revolutionized various industries by enabling machines to create content, such as images, text, and music, that mimics human creativity. However, along with its advancements, generative AI also poses several challenges and ethical issues that need to be addressed.

    Challenges Threats Ethical Issues Uncontrolled Behavior Data Ownership Copyright Challenges
    Generative AI faces challenges in ensuring the quality and accuracy of the content it generates. There is a risk of producing misleading or harmful information. One of the major threats of generative AI is the potential misuse of generated content for malicious purposes, such as deepfakes and misinformation. Ethical concerns arise regarding the use of generative AI in creating fake content that can deceive individuals or manipulate public opinion. Uncontrolled behavior of generative AI systems can lead to unintended outputs or biases in the generated content, impacting its reliability. Issues related to data ownership arise when generative AI uses datasets without proper consent or acknowledgment of the original creators. Copyright challenges emerge when generative AI produces content that infringes upon existing intellectual property rights, raising questions about legal responsibility.

    Addressing these challenges and ethical considerations is crucial to harness the potential benefits of generative AI while mitigating its risks. Stakeholders must collaborate to establish guidelines and regulations that promote responsible use of this technology.


    Explainability challenges



    There are a number of challenges in the interpretation of generative AI. These include:

    Lack of transparency: Generative AI models are often complex and opaque, making it difficult to understand how they work. This can make it difficult to interpret the output of these models and to identify potential biases or errors.
    Data bias: Generative AI models are trained on large datasets of data. If these datasets are biased, then the models will also be biased. This can lead to the models generating output that is biased or discriminatory.
    Unintended consequences: Generative AI models can be used to generate a wide variety of output, including text, code, images, and music. It is important to be aware of the potential unintended consequences of using these models. For example, a generative AI model could be used to generate fake news articles or to create deepfakes.
    Despite these challenges, generative AI is a powerful tool that has the potential to be used for a variety of purposes. It is important to be aware of the challenges in the interpretation of generative AI and to take steps to mitigate these challenges.

    Here are some additional tips for interpreting generative AI:

    Understand the model: It is important to understand how the generative AI model works. This will help you to interpret the output of the model and to identify potential biases or errors.
    Be aware of data bias: Generative AI models are trained on large datasets of data. If these datasets are biased, then the models will also be biased. It is important to be aware of the potential for data bias and to take steps to mitigate it.
    Consider the potential unintended consequences: Generative AI models can be used to generate a wide variety of output, including text, code, images, and music. It is important to be aware of the potential unintended consequences of using these models.

    Feedback loop challenges



    Generative AI models are trained on large datasets of data. If this data is not updated regularly, the model can become stale and produce outdated or inaccurate output. This is known as the staleness challenge.

    In addition, generative AI models can be susceptible to feedback loops. This occurs when the model is trained on data that is itself generated by the model. This can lead to the model producing output that is increasingly biased or inaccurate. This is known as the feedback loop challenge.

    To address the staleness challenge, it is important to regularly update the data that is used to train the generative AI model. This can be done by collecting new data or by updating existing data with new information.

    To address the feedback loop challenge, it is important to use a variety of data sources to train the generative AI model. This will help to prevent the model from becoming biased or inaccurate.

    It is also important to monitor the output of the generative AI model for signs of bias or inaccuracy. If any problems are identified, the model can be updated or retrained to address the problems.

    By following these steps, it is possible to mitigate the challenges related to staleness and feedback loops in generative AI.

    Here are some additional tips for mitigating the challenges of staleness and feedback loops in generative AI:

    Use a variety of data sources: When training a generative AI model, it is important to use a variety of data sources. This will help to prevent the model from becoming biased or inaccurate.
    Monitor the output of the model: It is important to monitor the output of the generative AI model for signs of bias or inaccuracy. If any problems are identified, the model can be updated or retrained to address the problems.
    Update the model regularly: It is important to regularly update the generative AI model with new data. This will help to ensure that the model is up-to-date and accurate.



    Challengs-overview    Data-ownership    Ethical-issues    Genai-challenges-concerns    Threats    Type-of-challenges    Uncontrolled-behavior   

    Dataknobs Blog

    Showcase: 10 Production Use Cases

    10 Use Cases Built By Dataknobs

    Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

    Data Product Approach

    Why Build Data Products

    Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

    AI Agent for Business Analysis

    Analyze reports, dashboard and determine To-do

    Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

    AI Agent Tutorial

    Agent AI Tutorial

    Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

    Build Data Products

    How Dataknobs help in building data products

    GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

    KreateHub

    Create New knowledge with Prompt library

    KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

    Build Budget Plan for GenAI

    CIO Guide to create GenAI Budget for 2025

    A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

    RAG for Unstructured & Structured Data

    RAG Use Cases and Implementation

    Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

    Why knobs matter

    Knobs are levers using which you manage output

    The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

    Our Products

    KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations