Tradeoff considerations for Generative AI


challengs-overview



Generative AI Risks and Trade off


  • Consider how New threats have emrged with geenrative AI, Evolving threats with AI, Existing threats has changed


  • Generative AI models are trained on large datasets of data. If this data is not updated regularly, the model can become stale and produce outdated or inaccurate output. This is known as the staleness challenge.

    In addition, generative AI models can be susceptible to feedback loops. This occurs when the model is trained on data that is itself generated by the model. This can lead to the model producing output that is increasingly biased or inaccurate. This is known as the feedback loop challenge.

    To address the staleness challenge, it is important to regularly update the data that is used to train the generative AI model. This can be done by collecting new data or by updating existing data with new information.

    To address the feedback loop challenge, it is important to use a variety of data sources to train the generative AI model. This will help to prevent the model from becoming biased or inaccurate.

    It is also important to monitor the output of the generative AI model for signs of bias or inaccuracy. If any problems are identified, the model can be updated or retrained to address the problems.

    By following these steps, it is possible to mitigate the challenges related to staleness and feedback loops in generative AI.

    Here are some additional tips for mitigating the challenges of staleness and feedback loops in generative AI:

    Use a variety of data sources: When training a generative AI model, it is important to use a variety of data sources. This will help to prevent the model from becoming biased or inaccurate.
    Monitor the output of the model: It is important to monitor the output of the generative AI model for signs of bias or inaccuracy. If any problems are identified, the model can be updated or retrained to address the problems.
    Update the model regularly: It is important to regularly update the generative AI model with new data. This will help to ensure that the model is up-to-date and accurate.

    Challenges-in-defining-govern    Challengs-overview    Copyright-challenges    Data-ownership    Ethical-issues    Fair-use-potential    Metrics-for-generative    Threats    Trust-issues    Type-of-challenges   

    Dataknobs Blog

    10 Use Cases Built

    10 Use Cases Built By Dataknobs

    Dataknobs has developed a wide range of products and solutions powered by Generative AI (GenAI), Agent AI, and traditional AI to address diverse industry needs. These solutions span finance, healthcare, real estate, e-commerce, and more. Click on to see in-depth look at these use cases - Stocks Earning Call Analysis, Ecommerce Analysis with GenAI, Financial Planner AI Assistant, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, Real Estate Agent etc.

    AI Agent for Business Analysis

    Analyze reports, dashboard and determine To-do

    DataKnobs has built an AI Agent for structured data analysis that extracts meaningful insights from diverse datasets such as e-commerce metrics, sales/revenue reports, and sports scorecards. The agent ingests structured data from sources like CSV files, SQL databases, and APIs, automatically detecting schemas and relationships while standardizing formats. Using statistical analysis, anomaly detection, and AI-driven forecasting, it identifies trends, correlations, and outliers, providing insights such as sales fluctuations, revenue leaks, and performance metrics.

    AI Agent Tutorial

    Agent AI Tutorial

    Here are slides and AI Agent Tutorial. Agentic AI refers to AI systems that can autonomously perceive, reason, and take actions to achieve specific goals without constant human intervention. These AI agents use techniques like reinforcement learning, planning, and memory to adapt and make decisions in dynamic environments. They are commonly used in automation, robotics, virtual assistants, and decision-making systems.

    Build Dataproducts

    How Dataknobs help in building data products

    Building data products using Generative AI (GenAI) and Agentic AI enhances automation, intelligence, and adaptability in data-driven applications. GenAI can generate structured and unstructured data, automate content creation, enrich datasets, and synthesize insights from large volumes of information. This helps in scenarios such as automated report generation, anomaly detection, and predictive modeling.

    KreateHub

    Create New knowledge with Prompt library

    At its core, KreateHub is designed to enable creation of new data and the generation of insights from existing datasets. It acts as a bridge between raw data and meaningful outcomes, providing the tools necessary for organizations to experiment, analyze, and optimize their data processes.

    Build Budget Plan for GenAI

    CIO Guide to create GenAI Budget for 2025

    CIOs and CTOs can apply GenAI in IT Systems. The guide here describe scenarios and solutions for IT system, tech stack, GenAI cost and how to allocate budget. Once CIO and CTO can apply this to IT system, it can be extended for business use cases across company.

    RAG For Unstructred and Structred Data

    RAG Use Cases and Implementation

    Here are several value propositions for Retrieval-Augmented Generation (RAG) across different contexts: Unstructred Data, Structred Data, Guardrails.

    Why knobs matter

    Knobs are levers using which you manage output

    See Drivetrain appproach for building data product, AI product. It has 4 steps and levers are key to success. Knobs are abstract mechanism on input that you can control.

    Our Products

    KreateBots

  • Pre built front end that you can configure
  • Pre built Admin App to manage chatbot
  • Prompt management UI
  • Personalization app
  • Built in chat history
  • Feedback Loop
  • Available on - GCP,Azure,AWS.
  • Add RAG with using few lines of Code.
  • Add FAQ generation to chatbot
  • KreateWebsites

  • AI powered websites to domainte search
  • Premium Hosting - Azure, GCP,AWS
  • AI web designer
  • Agent to generate website
  • SEO powered by LLM
  • Content management system for GenAI
  • Buy as Saas Application or managed services
  • Available on Azure Marketplace too.
  • Kreate CMS

  • CMS for GenAI
  • Lineage for GenAI and Human created content
  • Track GenAI and Human Edited content
  • Trace pages that use content
  • Ability to delete GenAI content
  • Generate Slides

  • Give prompt to generate slides
  • Convert slides into webpages
  • Add SEO to slides webpages
  • Content Compass

  • Generate articles
  • Generate images
  • Generate related articles and images
  • Get suggestion what to write next