A Step-by-Step Look at LLM Training - Shaping LLM


Large Language Models (LLMs) have become the darlings of the AI world, capable of generating human-quality text, translating languages, and even writing different kinds of creative content. But training these marvels is no walk in the park. Let's delve into the intricate steps involved in crafting an LLM:

1. The Information Feast: Data Collection

The journey begins with data. LLMs require a vast and varied diet of text, often culled from books, articles, code repositories, and the sprawling web. Diversity is key here; the more writing styles and topics the model encounters, the richer its understanding of language becomes.

2. Scrubbing the Mess: Data Cleaning

Raw text isn't fed directly to the LLM. It needs a good scrubbing first. Data scientists perform a process called tokenization, breaking down the text into smaller, digestible units like words or phrases. This allows the model to understand the building blocks of language. Additionally, data cleaning might be necessary to remove biases or errors that could skew the model's learning.

3. Unsupervised Learning: The Model Discovers on Its Own

Unlike supervised learning where models are trained on labeled data (think "cat" next to a picture of a cat), LLMs embark on an unsupervised learning adventure. Here, the model sifts through the massive dataset, identifying patterns and relationships between the tokens. This allows the LLM to grasp the nuances of language structure, like grammar and sentence flow. It essentially starts to understand the world through the statistical connections found in text.

4. Self-Supervised Learning: Teaching Through Play

But unsupervised learning isn't the whole story. Many LLMs also leverage a technique called self-supervised learning. Here, the model is given tasks like predicting the next word in a sequence or completing a cloze passage (filling in the blanks). By constantly getting feedback on its predictions, the model refines its understanding of language and its ability to process information.

5. The Computational Challenge: Training Takes Muscle

Training an LLM is a computationally expensive task. These models have millions, sometimes billions, of parameters that need to be adjusted based on the data. This requires specialized hardware, often clusters of powerful GPUs, to handle the immense calculations involved. Fine-tuning these parameters is what ultimately allows the LLM to learn and improve.

The Art of the Craft: Understanding Context is King

The key to LLM training architecture lies in its ability to understand context and the relationships between words. By analyzing the data, the model learns not just the meaning of individual words, but also how they interact with each other to convey meaning. This allows the LLM to not only generate grammatically correct text, but also text that is coherent and relevant to the situation.

The Road Ahead: A Perilous Path

Training LLMs is complex and fraught with challenges. Biases can creep in from the data, and ensuring the model generates safe and non-offensive text requires careful consideration. However, the potential rewards are vast, pushing the boundaries of what AI can achieve and opening doors to exciting new applications.

Dataknobs Blog

10 Use Cases Built

10 Use Cases Built By Dataknobs

Dataknobs has developed a wide range of products and solutions powered by Generative AI (GenAI), Agent AI, and traditional AI to address diverse industry needs. These solutions span finance, healthcare, real estate, e-commerce, and more. Click on to see in-depth look at these use cases - Stocks Earning Call Analysis, Ecommerce Analysis with GenAI, Financial Planner AI Assistant, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, Real Estate Agent etc.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

DataKnobs has built an AI Agent for structured data analysis that extracts meaningful insights from diverse datasets such as e-commerce metrics, sales/revenue reports, and sports scorecards. The agent ingests structured data from sources like CSV files, SQL databases, and APIs, automatically detecting schemas and relationships while standardizing formats. Using statistical analysis, anomaly detection, and AI-driven forecasting, it identifies trends, correlations, and outliers, providing insights such as sales fluctuations, revenue leaks, and performance metrics.

AI Agent Tutorial

Agent AI Tutorial

Here are slides and AI Agent Tutorial. Agentic AI refers to AI systems that can autonomously perceive, reason, and take actions to achieve specific goals without constant human intervention. These AI agents use techniques like reinforcement learning, planning, and memory to adapt and make decisions in dynamic environments. They are commonly used in automation, robotics, virtual assistants, and decision-making systems.

Build Dataproducts

How Dataknobs help in building data products

Building data products using Generative AI (GenAI) and Agentic AI enhances automation, intelligence, and adaptability in data-driven applications. GenAI can generate structured and unstructured data, automate content creation, enrich datasets, and synthesize insights from large volumes of information. This helps in scenarios such as automated report generation, anomaly detection, and predictive modeling.

KreateHub

Create New knowledge with Prompt library

At its core, KreateHub is designed to enable creation of new data and the generation of insights from existing datasets. It acts as a bridge between raw data and meaningful outcomes, providing the tools necessary for organizations to experiment, analyze, and optimize their data processes.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

CIOs and CTOs can apply GenAI in IT Systems. The guide here describe scenarios and solutions for IT system, tech stack, GenAI cost and how to allocate budget. Once CIO and CTO can apply this to IT system, it can be extended for business use cases across company.

RAG For Unstructred and Structred Data

RAG Use Cases and Implementation

Here are several value propositions for Retrieval-Augmented Generation (RAG) across different contexts: Unstructred Data, Structred Data, Guardrails.

Why knobs matter

Knobs are levers using which you manage output

See Drivetrain appproach for building data product, AI product. It has 4 steps and levers are key to success. Knobs are abstract mechanism on input that you can control.

Our Products

KreateBots

  • Pre built front end that you can configure
  • Pre built Admin App to manage chatbot
  • Prompt management UI
  • Personalization app
  • Built in chat history
  • Feedback Loop
  • Available on - GCP,Azure,AWS.
  • Add RAG with using few lines of Code.
  • Add FAQ generation to chatbot
  • KreateWebsites

  • AI powered websites to domainte search
  • Premium Hosting - Azure, GCP,AWS
  • AI web designer
  • Agent to generate website
  • SEO powered by LLM
  • Content management system for GenAI
  • Buy as Saas Application or managed services
  • Available on Azure Marketplace too.
  • Kreate CMS

  • CMS for GenAI
  • Lineage for GenAI and Human created content
  • Track GenAI and Human Edited content
  • Trace pages that use content
  • Ability to delete GenAI content
  • Generate Slides

  • Give prompt to generate slides
  • Convert slides into webpages
  • Add SEO to slides webpages
  • Content Compass

  • Generate articles
  • Generate images
  • Generate related articles and images
  • Get suggestion what to write next