What Goes Into Training a Foundation LLM


Foundation LLMs (Large Language Models) are the powerhouses behind many of today's impressive AI feats, from generating realistic text to translating languages. But training these marvels takes a lot more than just feeding them text. Let's dive into the key ingredients that go into building a foundation LLM.

Data, the Fuel of Learning:

The foundation of any LLM is the data it's trained on. These models require massive amounts of text data, often scraped from books, articles, code repositories, and even the vast corners of the internet. This data needs to be diverse, encompassing a wide range of writing styles and topics to equip the LLM with a broad understanding of language.

Preparing the Textual Feast:

Raw text isn't fed directly to the LLM. Data scientists perform a process called tokenization, breaking down the text into smaller units like words or phrases. This allows the model to understand the building blocks of language. Additionally, data cleaning might be necessary to remove biases or errors that could skew the model's learning.

The Learning Algorithm: Unsupervised Adventures

Unlike supervised learning where models are trained on labeled data, foundation LLMs utilize unsupervised learning. Here, the model sifts through the massive dataset, identifying patterns and relationships between the tokens. This allows the LLM to grasp the nuances of language structure, like grammar and sentence flow, and begin to develop an understanding of the world through the statistical relationships found in text.

The Training Powerhouse: A Matter of Muscle

Training a foundation LLM is a computationally expensive task. These models have millions, sometimes billions, of parameters that need to be adjusted based on the data. This requires specialized hardware, often clusters of powerful GPUs, to handle the immense calculations involved.

Evaluating the Mastermind: Is it Learning?

Once trained, the LLM's performance is evaluated on various tasks. This might involve testing its ability to complete sentences, translate languages, or answer questions in a comprehensive way. Based on these evaluations, the model might be further fine-tuned to improve its performance in specific areas.

The Road Ahead: Beyond the Basics

Foundation LLMs are the groundwork for even more specialized AI models. By fine-tuning these models on specific tasks, developers can create applications for machine translation, writing assistance, or even code generation. As research continues, the capabilities of foundation LLMs are expected to grow even further, pushing the boundaries of what AI can achieve.

Dataknobs Blog

10 Use Cases Built

10 Use Cases Built By Dataknobs

Dataknobs has developed a wide range of products and solutions powered by Generative AI (GenAI), Agent AI, and traditional AI to address diverse industry needs. These solutions span finance, healthcare, real estate, e-commerce, and more. Click on to see in-depth look at these use cases - Stocks Earning Call Analysis, Ecommerce Analysis with GenAI, Financial Planner AI Assistant, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, Real Estate Agent etc.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

DataKnobs has built an AI Agent for structured data analysis that extracts meaningful insights from diverse datasets such as e-commerce metrics, sales/revenue reports, and sports scorecards. The agent ingests structured data from sources like CSV files, SQL databases, and APIs, automatically detecting schemas and relationships while standardizing formats. Using statistical analysis, anomaly detection, and AI-driven forecasting, it identifies trends, correlations, and outliers, providing insights such as sales fluctuations, revenue leaks, and performance metrics.

AI Agent Tutorial

Agent AI Tutorial

Here are slides and AI Agent Tutorial. Agentic AI refers to AI systems that can autonomously perceive, reason, and take actions to achieve specific goals without constant human intervention. These AI agents use techniques like reinforcement learning, planning, and memory to adapt and make decisions in dynamic environments. They are commonly used in automation, robotics, virtual assistants, and decision-making systems.

Build Dataproducts

How Dataknobs help in building data products

Building data products using Generative AI (GenAI) and Agentic AI enhances automation, intelligence, and adaptability in data-driven applications. GenAI can generate structured and unstructured data, automate content creation, enrich datasets, and synthesize insights from large volumes of information. This helps in scenarios such as automated report generation, anomaly detection, and predictive modeling.

KreateHub

Create New knowledge with Prompt library

At its core, KreateHub is designed to enable creation of new data and the generation of insights from existing datasets. It acts as a bridge between raw data and meaningful outcomes, providing the tools necessary for organizations to experiment, analyze, and optimize their data processes.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

CIOs and CTOs can apply GenAI in IT Systems. The guide here describe scenarios and solutions for IT system, tech stack, GenAI cost and how to allocate budget. Once CIO and CTO can apply this to IT system, it can be extended for business use cases across company.

RAG For Unstructred and Structred Data

RAG Use Cases and Implementation

Here are several value propositions for Retrieval-Augmented Generation (RAG) across different contexts: Unstructred Data, Structred Data, Guardrails.

Why knobs matter

Knobs are levers using which you manage output

See Drivetrain appproach for building data product, AI product. It has 4 steps and levers are key to success. Knobs are abstract mechanism on input that you can control.

Our Products

KreateBots

  • Pre built front end that you can configure
  • Pre built Admin App to manage chatbot
  • Prompt management UI
  • Personalization app
  • Built in chat history
  • Feedback Loop
  • Available on - GCP,Azure,AWS.
  • Add RAG with using few lines of Code.
  • Add FAQ generation to chatbot
  • KreateWebsites

  • AI powered websites to domainte search
  • Premium Hosting - Azure, GCP,AWS
  • AI web designer
  • Agent to generate website
  • SEO powered by LLM
  • Content management system for GenAI
  • Buy as Saas Application or managed services
  • Available on Azure Marketplace too.
  • Kreate CMS

  • CMS for GenAI
  • Lineage for GenAI and Human created content
  • Track GenAI and Human Edited content
  • Trace pages that use content
  • Ability to delete GenAI content
  • Generate Slides

  • Give prompt to generate slides
  • Convert slides into webpages
  • Add SEO to slides webpages
  • Content Compass

  • Generate articles
  • Generate images
  • Generate related articles and images
  • Get suggestion what to write next