Generative AI Challenges Slides | Ethical, Trust, Copyright

CHALLENGES OVERVIEW

CHALLENGES OVERVIEW
CHALLENGES OVERVIEW

THREATS

THREATS
THREATS

TYPE OF CHALLENGES

TYPE OF CHALLENGES
TYPE OF CHALLENGES

UNCONTROLLED BEHAVIOR

UNCONTROLLED BEHAVIOR
UNCONTROLLED BEHAVIOR

ETHICAL ISSUES

ETHICAL ISSUES
ETHICAL ISSUES

DATA OWNERSHIP

DATA OWNERSHIP
DATA OWNERSHIP


Summary of Generative AI threats, challenges, risks


Dimensions of threats


  • New threats

  • How existing threats are changing

  • how existing threats have expanded

  • Ethical challenges


  • Lack of transparency

  • bias

  • Data privacy

  • IP and copyright violations

  • Environment challenges


  • high energy, compute

  • Carbaon foot print

  • Gen AI Risks and Threat


    Generative AI: Challenges and Ethical Considerations

    Generative Artificial Intelligence (AI) has revolutionized various industries by enabling machines to create content, such as images, text, and music, that mimics human creativity. However, along with its advancements, generative AI also poses several challenges and ethical issues that need to be addressed.

    Challenges Threats Ethical Issues Uncontrolled Behavior Data Ownership Copyright Challenges
    Generative AI faces challenges in ensuring the quality and accuracy of the content it generates. There is a risk of producing misleading or harmful information. One of the major threats of generative AI is the potential misuse of generated content for malicious purposes, such as deepfakes and misinformation. Ethical concerns arise regarding the use of generative AI in creating fake content that can deceive individuals or manipulate public opinion. Uncontrolled behavior of generative AI systems can lead to unintended outputs or biases in the generated content, impacting its reliability. Issues related to data ownership arise when generative AI uses datasets without proper consent or acknowledgment of the original creators. Copyright challenges emerge when generative AI produces content that infringes upon existing intellectual property rights, raising questions about legal responsibility.

    Addressing these challenges and ethical considerations is crucial to harness the potential benefits of generative AI while mitigating its risks. Stakeholders must collaborate to establish guidelines and regulations that promote responsible use of this technology.


    Explainability challenges


    Feedback loop challenges




    Challenges-in-defining-govern    Challenges-overview    Challengs-overview    Copyright-challenges    Data-ownership    Ethical-issues    Fair-use-potential    Metrics-for-generative    Threats-of-generative-ai    Threats   

    Dataknobs Blog

    10 Use Cases Built

    10 Use Cases Built By Dataknobs

    Dataknobs has developed a wide range of products and solutions powered by Generative AI (GenAI), Agent AI, and traditional AI to address diverse industry needs. These solutions span finance, healthcare, real estate, e-commerce, and more. Click on to see in-depth look at these use cases - Stocks Earning Call Analysis, Ecommerce Analysis with GenAI, Financial Planner AI Assistant, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, Real Estate Agent etc.

    AI Agent for Business Analysis

    Analyze reports, dashboard and determine To-do

    DataKnobs has built an AI Agent for structured data analysis that extracts meaningful insights from diverse datasets such as e-commerce metrics, sales/revenue reports, and sports scorecards. The agent ingests structured data from sources like CSV files, SQL databases, and APIs, automatically detecting schemas and relationships while standardizing formats. Using statistical analysis, anomaly detection, and AI-driven forecasting, it identifies trends, correlations, and outliers, providing insights such as sales fluctuations, revenue leaks, and performance metrics.

    AI Agent Tutorial

    Agent AI Tutorial

    Here are slides and AI Agent Tutorial. Agentic AI refers to AI systems that can autonomously perceive, reason, and take actions to achieve specific goals without constant human intervention. These AI agents use techniques like reinforcement learning, planning, and memory to adapt and make decisions in dynamic environments. They are commonly used in automation, robotics, virtual assistants, and decision-making systems.

    Build Dataproducts

    How Dataknobs help in building data products

    Building data products using Generative AI (GenAI) and Agentic AI enhances automation, intelligence, and adaptability in data-driven applications. GenAI can generate structured and unstructured data, automate content creation, enrich datasets, and synthesize insights from large volumes of information. This helps in scenarios such as automated report generation, anomaly detection, and predictive modeling.

    KreateHub

    Create New knowledge with Prompt library

    At its core, KreateHub is designed to enable creation of new data and the generation of insights from existing datasets. It acts as a bridge between raw data and meaningful outcomes, providing the tools necessary for organizations to experiment, analyze, and optimize their data processes.

    Build Budget Plan for GenAI

    CIO Guide to create GenAI Budget for 2025

    CIOs and CTOs can apply GenAI in IT Systems. The guide here describe scenarios and solutions for IT system, tech stack, GenAI cost and how to allocate budget. Once CIO and CTO can apply this to IT system, it can be extended for business use cases across company.

    RAG For Unstructred and Structred Data

    RAG Use Cases and Implementation

    Here are several value propositions for Retrieval-Augmented Generation (RAG) across different contexts: Unstructred Data, Structred Data, Guardrails.

    Why knobs matter

    Knobs are levers using which you manage output

    See Drivetrain appproach for building data product, AI product. It has 4 steps and levers are key to success. Knobs are abstract mechanism on input that you can control.

    Our Products

    KreateBots

  • Pre built front end that you can configure
  • Pre built Admin App to manage chatbot
  • Prompt management UI
  • Personalization app
  • Built in chat history
  • Feedback Loop
  • Available on - GCP,Azure,AWS.
  • Add RAG with using few lines of Code.
  • Add FAQ generation to chatbot
  • KreateWebsites

  • AI powered websites to domainte search
  • Premium Hosting - Azure, GCP,AWS
  • AI web designer
  • Agent to generate website
  • SEO powered by LLM
  • Content management system for GenAI
  • Buy as Saas Application or managed services
  • Available on Azure Marketplace too.
  • Kreate CMS

  • CMS for GenAI
  • Lineage for GenAI and Human created content
  • Track GenAI and Human Edited content
  • Trace pages that use content
  • Ability to delete GenAI content
  • Generate Slides

  • Give prompt to generate slides
  • Convert slides into webpages
  • Add SEO to slides webpages
  • Content Compass

  • Generate articles
  • Generate images
  • Generate related articles and images
  • Get suggestion what to write next