Master Semantic Search with Vector Databases



Using Embeddings for Semantic Search with Vector Databases
Introduction
In the era of massive unstructured data, semantic search has emerged as a game-changing technique to improve the way we retrieve information. Unlike traditional keyword-based search, semantic search leverages embeddings—numerical representations of data—to capture the context, meaning, and relationships between data points. This approach enables more accurate and meaningful search results.
Vector databases such as ChromaDB, FAISS, Pinecone, and Weaviate have become key technologies for implementing semantic search. In this article, we'll introduce these tools and provide an end-to-end example of building a semantic search application using ChromaDB.
What are Embeddings?
Embeddings are dense vector representations of data, such as text, images, or other modalities. They are designed to capture semantic meaning, enabling data points with similar meaning to have vectors that are close to each other in the high-dimensional space. For example, the words "dog" and "puppy" will have similar embeddings, while "dog" and "car" will be farther apart.
These embeddings can be generated using pre-trained models like OpenAI’s embeddings, BERT, or sentence-transformers for text, and CLIP for images. By leveraging embeddings, we can compare data points efficiently using operations like cosine similarity or Euclidean distance.
Why Use Vector Databases for Semantic Search?
Vector databases are specifically designed to store and query high-dimensional embeddings for similarity search. They optimize operations like nearest-neighbor search, which is the backbone of semantic search applications. Key features of vector databases include:
  • Efficient indexing and retrieval of high-dimensional data.
  • Support for approximate nearest-neighbor (ANN) search for scalable performance.
  • Integration with popular embedding models and frameworks.
  • Ability to


Ai-embeddings-info    Ai-embeddings    Challenges    Custom-rag-pipeline    Embedding-compression-techniq    Embedding-for-semantic-search    Embedding-model-for-ecommerce    Embedding-model-for-knowledge    Embedding-model-for-legal    Embedding-models-for-finance   

Dataknobs Blog

Showcase: 10 Production Use Cases

10 Use Cases Built By Dataknobs

Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

Data Product Approach

Why Build Data Products

Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

AI Agent Tutorial

Agent AI Tutorial

Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

Build Data Products

How Dataknobs help in building data products

GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

KreateHub

Create New knowledge with Prompt library

KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

RAG for Unstructured & Structured Data

RAG Use Cases and Implementation

Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

Why knobs matter

Knobs are levers using which you manage output

The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

Our Products

KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations