Embeddings Slides | Learn Importance Of Embeddings For NLP, LLM, AI Assistants

SLIDE1
SLIDE1
        
SLIDE2
SLIDE2
        
SLIDE3
SLIDE3
        
SLIDE4
SLIDE4
        
SLIDE5
SLIDE5
        
SLIDE6
SLIDE6
        
SLIDE7
SLIDE7
        
SLIDE8
SLIDE8
        
SLIDE9
SLIDE9
        
SLIDE10
SLIDE10
        


Understanding Embeddings in Natural Language Processing (NLP)

Topic Description
What are Embeddings? Embeddings are a type of word representation that allows words with similar meaning to have a similar representation. They are a distributed representation for text that is perhaps one of the key breakthroughs for the impressive performance of deep learning methods on challenging natural language processing problems. Embeddings are a way of using position and distance in vector space to represent the way words relate to each other in the real world.
Why are they used in NLP? Embeddings are used in NLP to capture not just the semantic meaning of individual words, but also the complex relationships between different words. They allow us to overcome the limitations of bag-of-words models, which ignore the order of words and therefore the context in which they appear. Embeddings, on the other hand, provide a dense representation where different words with similar context will have a similar vector.
How are Embeddings created? Embeddings are created using various methods. The most common methods include neural networks, dimensionality reduction on the word co-occurrence matrix, probabilistic models, or explicitly encoding knowledge about relations between words. Word2Vec, GloVe, and FastText are some of the most popular models to generate embeddings in NLP.
What are dimensions in Embeddings? Dimensions in embeddings represent the size of the embedding vectors. Each dimension in the vector can be considered as a feature of the word. The number of dimensions is a parameter you can set. A higher number of dimensions allows the embedding to capture more nuanced relationships between words, but also requires more data to learn effectively.
What do they represent? Each dimension in the embedding vector can represent a latent semantic feature of the word. For example, one dimension may capture the gender property of words (like king vs queen), another dimension may capture the tense of verbs (like walk vs walked), and so on. However, these dimensions are not explicitly interpretable in most cases.
The relationship between dimensionality and model performance There is a trade-off between the dimensionality of the embeddings and the model performance. While higher dimensions can capture more information and thus potentially improve the model performance, it also increases the computational complexity and the risk of overfitting, especially when the amount of data is limited. Therefore, choosing the right dimensionality is crucial for the performance of NLP models.



Build-a-custom-rag-pipeline-w    Building-a-recommendation-sys    Challenges-in-good-embeddings    Chunking-and-tokenization    Chunking    Clip-and-multimodal-embedding    Compression-techniques-for-em    Dimensionality-reduction-need    Dimensionality-vs-model-perfo    Embedding-applications-in-e-c   

Dataknobs Blog

Showcase: 10 Production Use Cases

10 Use Cases Built By Dataknobs

Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

Data Product Approach

Why Build Data Products

Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

AI Agent Tutorial

Agent AI Tutorial

Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

Build Data Products

How Dataknobs help in building data products

GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

KreateHub

Create New knowledge with Prompt library

KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

RAG for Unstructured & Structured Data

RAG Use Cases and Implementation

Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

Why knobs matter

Knobs are levers using which you manage output

The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

Our Products

KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations