Dimensionality vs Model Performance in Machine Learning

SLIDE1
SLIDE1
        


Concept Description
Introduction
In the realm of machine learning and data science, the relationship between dimensionality and model performance is a critical consideration. The term 'dimensionality' in this context refers to the number of features or variables in a dataset. Model performance, on the other hand, refers to how well a machine learning model can predict or classify data points based on these features. The trade-off between these two aspects is a delicate balancing act that data scientists must navigate.
The Curse of Dimensionality
The 'Curse of Dimensionality' is a term coined by Richard Bellman to describe the challenges and problems that arise when dealing with high-dimensional data. As the dimensionality increases, the volume of the space increases so fast that the available data become sparse. This sparsity is problematic for any method that requires statistical significance. In order to obtain a statistically sound and reliable result, the amount of data needed to support the result often grows exponentially with the dimensionality.
Model Performance
Model performance is a measure of how well a machine learning model can predict or classify data points. It is typically evaluated using metrics such as accuracy, precision, recall, F1 score, and area under the ROC curve (AUC-ROC). However, as the dimensionality of a dataset increases, model performance can degrade due to overfitting. Overfitting occurs when a model learns the noise in the training data to the extent that it negatively impacts the performance of the model on new data.
Dimensionality Reduction
Dimensionality reduction is a technique used to reduce the number of input variables in a dataset. By reducing the dimensionality, we can simplify the model, make it faster, and improve performance by reducing overfitting. Techniques for dimensionality reduction include feature selection (selecting a subset of the original variables) and feature extraction (creating a new set of variables that capture the essential information in the original variables).
Conclusion
The trade-off between dimensionality and model performance is a critical aspect of machine learning and data science. High-dimensional data can lead to overfitting and poor model performance, but reducing the dimensionality too much can result in loss of information. Therefore, it is essential to find the right balance, often through techniques such as dimensionality reduction, to ensure optimal model performance.



Challenges-in-good-embeddings    Chunking-and-tokenization    Chunking    Dimensionality-reduction-need    Dimensionality-vs-model-perfo    Embeddings-for-question-answer    Ethical-implications-of-using    Impact-of-embedding-dimension    Open-ai-embeddings    Role-of-embeddings-in-various   

Dataknobs Blog

10 Use Cases Built

10 Use Cases Built By Dataknobs

Dataknobs has developed a wide range of products and solutions powered by Generative AI (GenAI), Agent AI, and traditional AI to address diverse industry needs. These solutions span finance, healthcare, real estate, e-commerce, and more. Click on to see in-depth look at these use cases - Stocks Earning Call Analysis, Ecommerce Analysis with GenAI, Financial Planner AI Assistant, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, Real Estate Agent etc.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

DataKnobs has built an AI Agent for structured data analysis that extracts meaningful insights from diverse datasets such as e-commerce metrics, sales/revenue reports, and sports scorecards. The agent ingests structured data from sources like CSV files, SQL databases, and APIs, automatically detecting schemas and relationships while standardizing formats. Using statistical analysis, anomaly detection, and AI-driven forecasting, it identifies trends, correlations, and outliers, providing insights such as sales fluctuations, revenue leaks, and performance metrics.

AI Agent Tutorial

Agent AI Tutorial

Here are slides and AI Agent Tutorial. Agentic AI refers to AI systems that can autonomously perceive, reason, and take actions to achieve specific goals without constant human intervention. These AI agents use techniques like reinforcement learning, planning, and memory to adapt and make decisions in dynamic environments. They are commonly used in automation, robotics, virtual assistants, and decision-making systems.

Build Dataproducts

How Dataknobs help in building data products

Building data products using Generative AI (GenAI) and Agentic AI enhances automation, intelligence, and adaptability in data-driven applications. GenAI can generate structured and unstructured data, automate content creation, enrich datasets, and synthesize insights from large volumes of information. This helps in scenarios such as automated report generation, anomaly detection, and predictive modeling.

KreateHub

Create New knowledge with Prompt library

At its core, KreateHub is designed to enable creation of new data and the generation of insights from existing datasets. It acts as a bridge between raw data and meaningful outcomes, providing the tools necessary for organizations to experiment, analyze, and optimize their data processes.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

CIOs and CTOs can apply GenAI in IT Systems. The guide here describe scenarios and solutions for IT system, tech stack, GenAI cost and how to allocate budget. Once CIO and CTO can apply this to IT system, it can be extended for business use cases across company.

RAG For Unstructred and Structred Data

RAG Use Cases and Implementation

Here are several value propositions for Retrieval-Augmented Generation (RAG) across different contexts: Unstructred Data, Structred Data, Guardrails.

Why knobs matter

Knobs are levers using which you manage output

See Drivetrain appproach for building data product, AI product. It has 4 steps and levers are key to success. Knobs are abstract mechanism on input that you can control.

Our Products

KreateBots

  • Pre built front end that you can configure
  • Pre built Admin App to manage chatbot
  • Prompt management UI
  • Personalization app
  • Built in chat history
  • Feedback Loop
  • Available on - GCP,Azure,AWS.
  • Add RAG with using few lines of Code.
  • Add FAQ generation to chatbot
  • KreateWebsites

  • AI powered websites to domainte search
  • Premium Hosting - Azure, GCP,AWS
  • AI web designer
  • Agent to generate website
  • SEO powered by LLM
  • Content management system for GenAI
  • Buy as Saas Application or managed services
  • Available on Azure Marketplace too.
  • Kreate CMS

  • CMS for GenAI
  • Lineage for GenAI and Human created content
  • Track GenAI and Human Edited content
  • Trace pages that use content
  • Ability to delete GenAI content
  • Generate Slides

  • Give prompt to generate slides
  • Convert slides into webpages
  • Add SEO to slides webpages
  • Content Compass

  • Generate articles
  • Generate images
  • Generate related articles and images
  • Get suggestion what to write next