"Mastering Chunking & Vector DB: Key to NLP Success"

SLIDE1
SLIDE1
        
SLIDE2
SLIDE2
        
SLIDE3
SLIDE3
        
SLIDE4
SLIDE4
        


Topic Description
Chunking in NLP Chunking, also known as shallow parsing, is a process in Natural Language Processing (NLP) that segments and categorizes text into chunks. These chunks are meaningful and grouped pieces of information, such as phrases or sentences. Chunking helps in structuring the input text, making it easier for machines to understand and process natural language.
Consideration for Chunk Size The size of the chunk is a crucial factor in NLP. The chunk size should be large enough to contain meaningful information but small enough to be processed efficiently. The ideal chunk size depends on the specific task and the computational resources available. Too large chunks may lead to memory issues, while too small chunks may not capture the necessary context.
Effect of Chunk Size on Output The size of the chunk can significantly impact the output of an NLP task. If the chunk size is too small, the model may miss out on important contextual information, leading to inaccurate results. On the other hand, if the chunk size is too large, it may lead to computational inefficiencies and memory issues. Therefore, choosing the right chunk size is crucial for achieving optimal results.
Vector DB Vector Database (Vector DB) is a database that stores vectors instead of traditional data types. In the context of NLP, vectors are used to represent words or phrases in a multi-dimensional space. This representation allows machines to understand and process natural language in a more efficient and meaningful way. Vector DB is particularly useful in tasks such as semantic search, recommendation systems, and similarity checks.



Build-a-custom-rag-pipeline-w    Building-a-recommendation-sys    Challenges-in-good-embeddings    Chunking-and-tokenization    Chunking    Clip-and-multimodal-embedding    Compression-techniques-for-em    Dimensionality-reduction-need    Dimensionality-vs-model-perfo    Embedding-applications-in-e-c   

Dataknobs Blog

Showcase: 10 Production Use Cases

10 Use Cases Built By Dataknobs

Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

Data Product Approach

Why Build Data Products

Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

AI Agent Tutorial

Agent AI Tutorial

Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

Build Data Products

How Dataknobs help in building data products

GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

KreateHub

Create New knowledge with Prompt library

KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

RAG for Unstructured & Structured Data

RAG Use Cases and Implementation

Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

Why knobs matter

Knobs are levers using which you manage output

The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

Our Products

KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations