tpu-limitations



Some key limitations of TPUs compared to GPUs include:

Limited precision support: TPUs are optimized primarily for low-precision (8-bit and below) computation. They only support FP32 (single-precision) and BF16 (brain floating point) math at reduced throughput. This can limit performance for models that don't quantize well to lower precisions. GPUs provide full FP16, FP32 and FP64 (double-precision) support.

Limited framework support: TPUs are tightly integrated with TensorFlow and work best with models built in TensorFlow. Support for other ML frameworks like PyTorch and MXNet is more limited. GPUs work with a wider range of ML frameworks, as well as non-ML frameworks.

Reduced flexibility: TPUs are specialized for ML workloads like training neural networks and recommendation systems. They are less suited for more general tasks like rendering, video encoding, molecular simulation, etc. GPUs are more general purpose and flexible compute accelerators.

Limited onboard memory: TPUs typically have 8-16 gigabytes of high-bandwidth memory per chip. This can limit the size of models they can train without significant performance impact from swapping to host memory. High-end GPUs have up to 32 gigabytes of onboard memory to train larger models.

Challenging to program: TPUs have a customized low-level hardware architecture and instruction set. This makes them more difficult to program at the hardware level compared to the more familiar CUDA architecture of NVIDIA GPUs. Most developers use the high-level TensorFlow APIs to leverage TPUs.

Limited scale: While TPU v3 pods contain up to 2048 cores, scaling to even larger chip counts requires significant engineering effort. NVIDIA's DGX SuperPOD architecture makes it easier to scale up to tens of thousands of GPUs. However, few ML models currently benefit from such an extreme scale.

So in summary, TPUs have some limitations around precision support, framework flexibility, onboard memory, and programming complexity compared to GPUs. However, for many ML workloads the benefits of TPUs like low-precision throughput, scalability and cost-efficiency still outweigh these limitations. And with each new generation, TPUs are gaining more generalized compute functionality.

Dataknobs Blog

Showcase: 10 Production Use Cases

10 Use Cases Built By Dataknobs

Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

Data Product Approach

Why Build Data Products

Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

AI Agent Tutorial

Agent AI Tutorial

Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

Build Data Products

How Dataknobs help in building data products

GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

KreateHub

Create New knowledge with Prompt library

KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

RAG for Unstructured & Structured Data

RAG Use Cases and Implementation

Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

Why knobs matter

Knobs are levers using which you manage output

The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

Our Products

KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations