Use LLM API and RAG to Build AI Assistant

ai-assistant-on-your-data



Building an AI Assistant Using Enterprise Data

Creating an AI assistant that leverages enterprise data can significantly enhance productivity and efficiency within an organization. In this scenario, we will explore how to build an AI assistant that utilizes Vector DB for context and integrates with the OpenAI API to provide final responses.

Components of the AI Assistant:

Component Description
Vector DB Vector DB is used to store and retrieve enterprise data, providing the AI assistant with the necessary context to understand queries and provide relevant responses.
OpenAI API The AI assistant calls the OpenAI API to generate final responses based on the context obtained from Vector DB. OpenAI's advanced natural language processing capabilities enable the assistant to provide accurate and contextually relevant answers.

Additional Features to Enhance the AI Assistant:

While the integration of Vector DB and the OpenAI API forms the core of the AI assistant, incorporating the following features can further enhance its functionality:

  • Personalization: Implement user-specific preferences and settings to tailor the assistant's responses based on individual needs and preferences.
  • Multi-language Support: Enable the AI assistant to understand and respond to queries in multiple languages to cater to a diverse user base.
  • Voice Recognition: Integrate speech-to-text capabilities to allow users to interact with the assistant through voice commands.
  • Task Automation: Enable the assistant to perform routine tasks and workflows based on predefined rules and triggers, enhancing productivity within the organization.
  • Analytics Dashboard: Provide insights into user interactions, frequently asked questions, and performance metrics to continuously improve the assistant's effectiveness.

By incorporating these additional features, the AI assistant can offer a more personalized and efficient experience for users, ultimately driving greater value for the enterprise.

Blog

100K-tokens    Agenda    Ai-assistant-architecture    Ai-assistant-building-blocks    Ai-assistant-custom-model    Ai-assistant-evaluation-metric    Ai-assistant-finetune-model    Ai-assistant-on-your-data    Ai-assistant-tech-stack    Ai-assistant-wrapper   

Dataknobs Blog

Showcase: 10 Production Use Cases

10 Use Cases Built By Dataknobs

Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

Data Product Approach

Why Build Data Products

Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

AI Agent Tutorial

Agent AI Tutorial

Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

Build Data Products

How Dataknobs help in building data products

GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

KreateHub

Create New knowledge with Prompt library

KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

RAG for Unstructured & Structured Data

RAG Use Cases and Implementation

Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

Why knobs matter

Knobs are levers using which you manage output

The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

Our Products

KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations