Use LLM API and RAG to Build AI Assistant


ai-assistant-on-your-data



Building an AI Assistant Using Enterprise Data

Creating an AI assistant that leverages enterprise data can significantly enhance productivity and efficiency within an organization. In this scenario, we will explore how to build an AI assistant that utilizes Vector DB for context and integrates with the OpenAI API to provide final responses.

Components of the AI Assistant:

Component Description
Vector DB Vector DB is used to store and retrieve enterprise data, providing the AI assistant with the necessary context to understand queries and provide relevant responses.
OpenAI API The AI assistant calls the OpenAI API to generate final responses based on the context obtained from Vector DB. OpenAI's advanced natural language processing capabilities enable the assistant to provide accurate and contextually relevant answers.

Additional Features to Enhance the AI Assistant:

While the integration of Vector DB and the OpenAI API forms the core of the AI assistant, incorporating the following features can further enhance its functionality:

  • Personalization: Implement user-specific preferences and settings to tailor the assistant's responses based on individual needs and preferences.
  • Multi-language Support: Enable the AI assistant to understand and respond to queries in multiple languages to cater to a diverse user base.
  • Voice Recognition: Integrate speech-to-text capabilities to allow users to interact with the assistant through voice commands.
  • Task Automation: Enable the assistant to perform routine tasks and workflows based on predefined rules and triggers, enhancing productivity within the organization.
  • Analytics Dashboard: Provide insights into user interactions, frequently asked questions, and performance metrics to continuously improve the assistant's effectiveness.

By incorporating these additional features, the AI assistant can offer a more personalized and efficient experience for users, ultimately driving greater value for the enterprise.


Blog


100K-tokens    Agenda    Ai-assistant-architecture    Ai-assistant-building-blocks    Ai-assistant-custom-model    Ai-assistant-evaluation-metric    Ai-assistant-finetune-model    Ai-assistant-on-your-data    Ai-assistant-tech-stack    Ai-assistant-wrapper   

Dataknobs Blog

10 Use Cases Built

10 Use Cases Built By Dataknobs

Dataknobs has developed a wide range of products and solutions powered by Generative AI (GenAI), Agent AI, and traditional AI to address diverse industry needs. These solutions span finance, healthcare, real estate, e-commerce, and more. Click on to see in-depth look at these use cases - Stocks Earning Call Analysis, Ecommerce Analysis with GenAI, Financial Planner AI Assistant, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, Real Estate Agent etc.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

DataKnobs has built an AI Agent for structured data analysis that extracts meaningful insights from diverse datasets such as e-commerce metrics, sales/revenue reports, and sports scorecards. The agent ingests structured data from sources like CSV files, SQL databases, and APIs, automatically detecting schemas and relationships while standardizing formats. Using statistical analysis, anomaly detection, and AI-driven forecasting, it identifies trends, correlations, and outliers, providing insights such as sales fluctuations, revenue leaks, and performance metrics.

AI Agent Tutorial

Agent AI Tutorial

Here are slides and AI Agent Tutorial. Agentic AI refers to AI systems that can autonomously perceive, reason, and take actions to achieve specific goals without constant human intervention. These AI agents use techniques like reinforcement learning, planning, and memory to adapt and make decisions in dynamic environments. They are commonly used in automation, robotics, virtual assistants, and decision-making systems.

Build Dataproducts

How Dataknobs help in building data products

Building data products using Generative AI (GenAI) and Agentic AI enhances automation, intelligence, and adaptability in data-driven applications. GenAI can generate structured and unstructured data, automate content creation, enrich datasets, and synthesize insights from large volumes of information. This helps in scenarios such as automated report generation, anomaly detection, and predictive modeling.

KreateHub

Create New knowledge with Prompt library

At its core, KreateHub is designed to enable creation of new data and the generation of insights from existing datasets. It acts as a bridge between raw data and meaningful outcomes, providing the tools necessary for organizations to experiment, analyze, and optimize their data processes.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

CIOs and CTOs can apply GenAI in IT Systems. The guide here describe scenarios and solutions for IT system, tech stack, GenAI cost and how to allocate budget. Once CIO and CTO can apply this to IT system, it can be extended for business use cases across company.

RAG For Unstructred and Structred Data

RAG Use Cases and Implementation

Here are several value propositions for Retrieval-Augmented Generation (RAG) across different contexts: Unstructred Data, Structred Data, Guardrails.

Why knobs matter

Knobs are levers using which you manage output

See Drivetrain appproach for building data product, AI product. It has 4 steps and levers are key to success. Knobs are abstract mechanism on input that you can control.

Our Products

KreateBots

  • Pre built front end that you can configure
  • Pre built Admin App to manage chatbot
  • Prompt management UI
  • Personalization app
  • Built in chat history
  • Feedback Loop
  • Available on - GCP,Azure,AWS.
  • Add RAG with using few lines of Code.
  • Add FAQ generation to chatbot
  • KreateWebsites

  • AI powered websites to domainte search
  • Premium Hosting - Azure, GCP,AWS
  • AI web designer
  • Agent to generate website
  • SEO powered by LLM
  • Content management system for GenAI
  • Buy as Saas Application or managed services
  • Available on Azure Marketplace too.
  • Kreate CMS

  • CMS for GenAI
  • Lineage for GenAI and Human created content
  • Track GenAI and Human Edited content
  • Trace pages that use content
  • Ability to delete GenAI content
  • Generate Slides

  • Give prompt to generate slides
  • Convert slides into webpages
  • Add SEO to slides webpages
  • Content Compass

  • Generate articles
  • Generate images
  • Generate related articles and images
  • Get suggestion what to write next