Vector Databases for AI & ML | Slides

VECTOR DB SLIDES

VECTOR DB SLIDES
VECTOR DB SLIDES

WHAT IS VECTOR DB

WHAT IS VECTOR DB
WHAT IS VECTOR DB

USES OF VECTOR DB

USES OF VECTOR DB
USES OF VECTOR DB

VECTOR DB VS TRADITIONAL DB SL

VECTOR DB VS TRADITIONAL DB SL
VECTOR DB VS TRADITIONAL DB SL

VECTOR DB VENDORS

VECTOR DB VENDORS
VECTOR DB VENDORS

VECTOR DB FEATURES

VECTOR DB FEATURES
VECTOR DB FEATURES

WHAT ARE VECTORS

WHAT ARE VECTORS
WHAT ARE VECTORS

CRITERIA TO SELECT VECTOR DB

CRITERIA TO SELECT VECTOR DB
CRITERIA TO SELECT VECTOR DB

VECTOR DB VS ELASTIC SEARCH

VECTOR DB VS ELASTIC SEARCH
VECTOR DB VS ELASTIC SEARCH

VECTOR DB DIMENSIONS

VECTOR DB DIMENSIONS
VECTOR DB DIMENSIONS

VECTOR DB CRUD

VECTOR DB CRUD
VECTOR DB CRUD

CHALLENGES FREQUENT UPDATE

CHALLENGES FREQUENT UPDATE
CHALLENGES FREQUENT UPDATE

VECTOR DB APPLICATIONS

VECTOR DB APPLICATIONS
VECTOR DB APPLICATIONS


Vector Databases Importance Usage
Vector databases are a type of database that store, process, and perform computations on data in the form of vectors. They are designed to handle high-dimensional data and are particularly useful in the field of machine learning and artificial intelligence, where data is often represented as high-dimensional vectors. Vector databases can perform operations such as similarity search and nearest neighbor search efficiently. With the rise of AI and machine learning, the need for efficient handling and processing of high-dimensional data has increased. Traditional databases are not designed to handle this type of data efficiently, leading to the emergence of vector databases. They allow for faster and more efficient processing of high-dimensional data, making them crucial in AI and machine learning applications. Vector databases are used when dealing with high-dimensional data, particularly in the field of AI and machine learning. They are used when operations such as similarity search and nearest neighbor search need to be performed on the data. They are also used when the data needs to be processed and analyzed quickly and efficiently.

Here we discuss the concept of vectors, their dimensions, significance in various fields, and data transformation operations, highlighting their crucial role in representing and manipulating data efficiently across disciplines like data science and machine learning.


Vector databases are designed for handling vector data and are optimized for data parallelism, making them ideal for large datasets that require high-performance computing. They are commonly used in fields such as data analytics, machine learning, and scientific computing. On the other hand, NoSQL databases are non-relational databases that can handle large volumes of unstructured data and are known for their scalability and flexible schemas. They are best suited for situations where data doesn't fit neatly into a table or when the data structure may change over time. NoSQL databases are often used in big data and real-time web applications.


Vector databases and NoSQL both handle unstructred data. Vector DB store embeddings and used in machine learning e.g. AI Assistants, recommendations, search etc.. NoSQL store real data and used for querying e.g. Big data scenarios nd also used in real time web applications.


In this slide we discuss the efficient storage and management of vector data using specialized vector databases, highlighting their role in similarity search tasks through algorithms like nearest neighbor search and various indexing techniques.


Vector databases store data in a vector format, enabling efficient storage and retrieval based on similarity metrics. In retrieval augmented generation, these databases enhance search and recommendation systems by quickly retrieving similar items using vector representations, facilitating personalized recommendations and efficient search functionalities.


Learn about the essential CRUD operations (Create, Read, Update, Delete) on vector data, which is crucial for effectively managing and manipulating spatial information. The guide covers creating new data, reading attributes and geometry, updating existing features, and deleting outdated or erroneous data from the database.


Here are real-world applications of geospatial technology across various industries, including logistics, retail, urban planning, healthcare, and agriculture. It highlights how location-based services are utilized for route optimization, marketing strategies, city infrastructure management, disease tracking, and precision farming to enhance efficiency and decision-making processes.


The cost of a vector database is influenced by factors such as the number of indices, dimensions of the data, inference/access frequency, storage space, and processing power required.


Here is a list of interview questions for evaluating candidates' knowledge and understanding of vector databases, including their definition, usage, advantages and disadvantages, indexing, and data security measures.




Challenges-frequent-update    Criteria-to-select-vector-db    Crud Operations For Vector DB    Uses-of-vector-db    Vector-db-applications    Vector-db-crud    Vector-db-dimensions    Vector-db-features    Vector-db-impact-invarious-fi    Vector-db-rag   

Dataknobs blog

10 Use Cases Built

10 Use Cases Built By Dataknobs

Dataknobs has developed a wide range of products and solutions powered by Generative AI (GenAI), Agent AI, and traditional AI to address diverse industry needs. These solutions span finance, healthcare, real estate, e-commerce, and more. Click on to see in-depth look at these use cases - Stocks Earning Call Analysis, Ecommerce Analysis with GenAI, Financial Planner AI Assistant, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, Real Estate Agent etc.

AI Agent Tutorial

Agent AI Tutorial

Here are slides and AI Agent Tutorial. Agentic AI refers to AI systems that can autonomously perceive, reason, and take actions to achieve specific goals without constant human intervention. These AI agents use techniques like reinforcement learning, planning, and memory to adapt and make decisions in dynamic environments. They are commonly used in automation, robotics, virtual assistants, and decision-making systems.

Build Dataproducts

How Dataknobs help in building data products

Building data products using Generative AI (GenAI) and Agentic AI enhances automation, intelligence, and adaptability in data-driven applications. GenAI can generate structured and unstructured data, automate content creation, enrich datasets, and synthesize insights from large volumes of information. This helps in scenarios such as automated report generation, anomaly detection, and predictive modeling.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

DataKnobs has built an AI Agent for structured data analysis that extracts meaningful insights from diverse datasets such as e-commerce metrics, sales/revenue reports, and sports scorecards. The agent ingests structured data from sources like CSV files, SQL databases, and APIs, automatically detecting schemas and relationships while standardizing formats. Using statistical analysis, anomaly detection, and AI-driven forecasting, it identifies trends, correlations, and outliers, providing insights such as sales fluctuations, revenue leaks, and performance metrics.

KreateHub

Create new knowledge with Prompt library

At its core, KreateHub is designed to enable creation of new data and the generation of insights from existing datasets. It acts as a bridge between raw data and meaningful outcomes, providing the tools necessary for organizations to experiment, analyze, and optimize their data processes.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

CIOs and CTOs can apply GenAI in IT Systems. The guide here describe scenarios and solutions for IT system, tech stack, GenAI cost and how to allocate budget. Once CIO and CTO can apply this to IT system, it can be extended for business use cases across company.

What is KREATE and KreatePro

Kreate - Bring your Ideas to Life

KREATE empowers you to create things - Dataset, Articles, Presentations, Proposals, Web design, Websites and AI Assistants Kreate is a platform inclide set of tools that ignite your creatviity and revolutionize the way you work. KReatePro is enterprise version.

What is KONTROLS

KONTROLS - apply creatvity with responsbility

KONTROLS enable adding guardrails, lineage, audit trails and governance. KOntrols recogizes that different use cases for Gen AI and AI have varying levels of control requirements. Kontrols provide structure to select right controls.

What is KNOBS

KNOBS - Experimentation and Diagnostics

Well defined tunable paramters for LLM API, LLM fine tuning , Vector DB. These parameters enable faster experimentation and diagosis for every state of GenAI development - chunking, embedding, upsert into vector DB, retrievel, generation and creating responses for AI Asistant.

Kreate Articles

Create Articles and Blogs

Create articles for Blogs, Websites, Social Media posts. Write set of articles together such as chapters of book, or complete book by giving list of topics and Kreate will generate all articles.

Kreate Slides

Create Presentations, Proposals and Pages

Design impactful presentation by giving prmpt. Convert your text and image content into presentations to win customers. Search in your knowledbe base of presentations and create presentations or different industry. Publish these presentation with one click. Generate SEO for public presentations to index and get traffic.

Kreate Websites

Agent to publish your website daily

AI powered website generation engine. It empower user to refresh website daily. Kreate Website AI agent does work of reading conent, website builder, SEO, create light weight images, create meta data, publish website, submit to search engine, generate sitemap and test websites.

Kreate AI Assistants

Build AI Assistant in low code/no code

Set up AI Assistant that give personized responss to your customers in minutes. Add RAG to AI assistant with minimal code- implement vector DB, create chunks to get contextual answer from your knowlebase. Build quality dataset with us for fine tuning and training a cusom LLM.

Create AI Agent

Build AI Agents - 5 types

AI agent independently chooses the best actions it needs to perform to achieve their goals. AI agents make rational decisions based on their perceptions and data to produce optimal performance and results. Here are features of AI Agent, Types and Design patterns

Develop data products with KREATE and AB Experiment

Develop data products and check user response thru experiment

As per HBR Data product require validation of both 1. whether algorithm work 2. whether user like it. Builders of data product need to balance between investing in data-building and experimenting. Our product KREATE focus on building dataset and apps , ABExperiment focus on ab testing. Both are designed to meet data product development lifecycle

Innovate with experiments

Experiment faster and cheaper with knobs

In complex problems you have to run hundreds of experiments. Plurality of method require in machine learning is extremely high. With Dataknobs approach, you can experiment thru knobs.

RAG For Unstructred and Structred Data

RAG Use Cases and Implementation

Here are several value propositions for Retrieval-Augmented Generation (RAG) across different contexts: Unstructred Data, Structred Data, Guardrails.

Why knobs matter

Knobs are levers using which you manage output

See Drivetrain appproach for building data product, AI product. It has 4 steps and levers are key to success. Knobs are abstract mechanism on input that you can control.

Our Products

KreateBots

  • Pre built front end that you can configure
  • Pre built Admin App to manage chatbot
  • Prompt management UI
  • Personalization app
  • Built in chat history
  • Feedback Loop
  • Available on - GCP,Azure,AWS.
  • Add RAG with using few lines of Code.
  • Add FAQ generation to chatbot
  • KreateWebsites

  • AI powered websites to domainte search
  • Premium Hosting - Azure, GCP,AWS
  • AI web designer
  • Agent to generate website
  • SEO powered by LLM
  • Content management system for GenAI
  • Buy as Saas Application or managed services
  • Available on Azure Marketplace too.
  • Kreate CMS

  • CMS for GenAI
  • Lineage for GenAI and Human created content
  • Track GenAI and Human Edited content
  • Trace pages that use content
  • Ability to delete GenAI content
  • Generate Slides

  • Give prompt to generate slides
  • Convert slides into webpages
  • Add SEO to slides webpages
  • Content Compass

  • Generate articles
  • Generate images
  • Generate related articles and images
  • Get suggestion what to write next