Criteria to Select Vector DB | Slides

criteria-to-select-vector-db



Criteria Description
Feature Set Evaluate the range of features the database supports, such as approximate nearest neighbor search, data indexing, metadata filtering, vector search capabilities, and integration with AI/ML pipelines.
Performance Consider the database's ability to handle large-scale vector data with low latency and high query throughput. Benchmark with real-world datasets to assess its efficiency.
Ease of Use Look for intuitive APIs, seamless integration with existing tech stacks, clear documentation, and straightforward setup processes that minimize learning curves.
Deployment Options Decide if you need flexibility in deployment, such as cloud-based, on-premises, or hybrid options. Consider managed services for simplified maintenance.
Open Source vs Closed Source Assess whether an open-source solution with modifiability and community support or a closed-source option with potential advanced proprietary features best fits your needs.
Cost Analyze both upfront and long-term costs, including licensing fees, cloud infrastructure costs, and operational expenses. Choose a solution that aligns with your budget.
Security Ensure the database supports robust security features, such as encryption, access controls, auditing, and compliance with industry security standards.
Governance Look for features like data lineage tracking, version control, and data management capabilities to maintain proper governance over your vector data.
Compliance Verify that the database meets regulatory requirements such as GDPR, HIPAA, or other data protection standards relevant to your industry or region.
Scalability Ensure the database can scale efficiently with growing datasets and handle larger workloads without significant degradation in performance.
Community and Vendor Support Check for active community forums, regular updates, and strong vendor support to troubleshoot issues and enhance usability.
Integration Ensure compatibility with your existing tech ecosystem, including AI frameworks, analytics tools, and programming languages.
Analytics and Insights Look for advanced analytics capabilities, including the ability to derive insights directly from vector data or visualize results effectively.
Stability and Maturity Choose a database that has a proven track record and stability, supported by a reputable vendor or active community contributors.
2-how-vector-databases-work-i    Challenges-frequent-update    Criteria-to-select-vector-db    Crud Operations For Vector DB    Tutorials    Uses-of-vector-db    Vector-db-anti-patterns    Vector-db-applications    Vector-db-crud    Vector-db-dimensions   

Dataknobs Blog

Showcase: 10 Production Use Cases

10 Use Cases Built By Dataknobs

Dataknobs delivers real, shipped outcomes across finance, healthcare, real estate, e‑commerce, and more—powered by GenAI, Agentic workflows, and classic ML. Explore detailed walk‑throughs of projects like Earnings Call Insights, E‑commerce Analytics with GenAI, Financial Planner AI, Kreatebots, Kreate Websites, Kreate CMS, Travel Agent Website, and Real Estate Agent tools.

Data Product Approach

Why Build Data Products

Companies should build data products because they transform raw data into actionable, reusable assets that directly drive business outcomes. Instead of treating data as a byproduct of operations, a data product approach emphasizes usability, governance, and value creation. Ultimately, they turn data from a cost center into a growth engine, unlocking compounding value across every function of the enterprise.

AI Agent for Business Analysis

Analyze reports, dashboard and determine To-do

Our structured‑data analysis agent connects to CSVs, SQL, and APIs; auto‑detects schemas; and standardizes formats. It finds trends, anomalies, correlations, and revenue opportunities using statistics, heuristics, and LLM reasoning. The output is crisp: prioritized insights and an action‑ready To‑Do list for operators and analysts.

AI Agent Tutorial

Agent AI Tutorial

Dive into slides and a hands‑on guide to agentic systems—perception, planning, memory, and action. Learn how agents coordinate tools, adapt via feedback, and make decisions in dynamic environments for automation, assistants, and robotics.

Build Data Products

How Dataknobs help in building data products

GenAI and Agentic AI accelerate data‑product development: generate synthetic data, enrich datasets, summarize and reason over large corpora, and automate reporting. Use them to detect anomalies, surface drivers, and power predictive models—while keeping humans in the loop for control and safety.

KreateHub

Create New knowledge with Prompt library

KreateHub turns prompts into reusable knowledge assets—experiment, track variants, and compose chains that transform raw data into decisions. It’s your workspace for rapid iteration, governance, and measurable impact.

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

A pragmatic playbook for CIOs/CTOs: scope the stack, forecast usage, model costs, and sequence investments across infra, safety, and business use cases. Apply the framework to IT first, then scale to enterprise functions.

RAG for Unstructured & Structured Data

RAG Use Cases and Implementation

Explore practical RAG patterns: unstructured corpora, tabular/SQL retrieval, and guardrails for accuracy and compliance. Implementation notes included.

Why knobs matter

Knobs are levers using which you manage output

The Drivetrain approach frames product building in four steps; “knobs” are the controllable inputs that move outcomes. Design clear metrics, expose the right levers, and iterate—control leads to compounding impact.

Our Products

KreateBots

  • Ready-to-use front-end—configure in minutes
  • Admin dashboard for full chatbot control
  • Integrated prompt management system
  • Personalization and memory modules
  • Conversation tracking and analytics
  • Continuous feedback learning loop
  • Deploy across GCP, Azure, or AWS
  • Add Retrieval-Augmented Generation (RAG) in seconds
  • Auto-generate FAQs for user queries
  • KreateWebsites

  • Build SEO-optimized sites powered by LLMs
  • Host on Azure, GCP, or AWS
  • Intelligent AI website designer
  • Agent-assisted website generation
  • End-to-end content automation
  • Content management for AI-driven websites
  • Available as SaaS or managed solution
  • Listed on Azure Marketplace
  • Kreate CMS

  • Purpose-built CMS for AI content pipelines
  • Track provenance for AI vs human edits
  • Monitor lineage and version history
  • Identify all pages using specific content
  • Remove or update AI-generated assets safely
  • Generate Slides

  • Instant slide decks from natural language prompts
  • Convert slides into interactive webpages
  • Optimize presentation pages for SEO
  • Content Compass

  • Auto-generate articles and blogs
  • Create and embed matching visuals
  • Link related topics for SEO ranking
  • AI-driven topic and content recommendations